Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Z Med Phys ; 34(1): 31-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030484

RESUMO

The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A "shielded" ubiquitous galactic cosmic radiation (GCR) environment combined with--and separate from--the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body's self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report.


Assuntos
Radiação Cósmica , Voo Espacial , Feminino , Humanos , Masculino , Doses de Radiação , Radiometria , Astronave
3.
Z Med Phys ; 34(1): 14-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37507310

RESUMO

The Partner Agencies of the International Space Station (ISS) maintain separate career exposure limits and shared Flight Rules that control the ionising radiation exposures that crewmembers can experience due to ambient environments throughout their space missions. In low Earth orbit as well as further out in space, energetic ions referred to as galactic cosmic radiation (GCR) easily penetrate spacecraft and spacecraft contents and consequently are always present at low dose rates. Protons and electrons that are trapped in the Earth's geomagnetic field are encountered intermittently, and a rare energetic solar particle event (SPE) may expose crew to (mostly) energetic protons. Space radiation protection goals are to optimize radiation exposures to maintain deleterious late effects at known and acceptable levels and to prevent any early effects that might compromise crew health and mission success. The conventional radiation protection metric effective dose provides a basic framework for limiting exposures associated with human spaceflight and can be communicated to all stakeholders. Additional metrics and uncertainty analyses are required to understand more completely and to convey nuanced information about potential impacts to an individual astronaut or to a space mission. Missions to remote destinations well beyond low Earth orbit (BLEO) are upcoming and bestow additional challenges that shape design and radiation protection needs. NASA has recently adopted a more permissive career exposure limit based upon effective dose and new restrictions on mission exposures imposed by nuclear technologies. This manuscript reviews the exposure limits that apply to the ISS crewmembers. This work was performed in collaboration with the advisory and guidance efforts of International Commission on Radiological Protection (ICRP) Task Group 115 and will be summarized in an upcoming ICRP Report.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Humanos , Doses de Radiação , Prótons , Radiação Cósmica/efeitos adversos , Medição de Risco
4.
Life Sci Space Res (Amst) ; 25: 148-150, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32414489

RESUMO

A correspondence has been received in reference to a recently published article titled "On the decision making criteria for cis-lunar reference scenarios". The intent of the paper was to demonstrate: (i) a novel methodology for calculating the dose from solar particle events (SPEs), and (ii) the impact of the SPE parametric model, shield thickness, dose metric, and radiation transport code on choosing a worst-case scenario. This effort assumed a spherical, aluminum spacecraft with an internal diameter of 3.8 m and with varying wall thickness ranging from 2 to 10 cm. A brief component of this article compared the dose from several solar particle events (SPEs) inside the spherical spacecraft geometry as calculated with Monte Carlo radiation transport code MCNPX and the on-line tool OLTARIS. In this comparison, the MCNPX simulation parameters assumed a volume-averaged dose while OLTARIS calculations assumed a point-dose estimate at the center of the spherical geometry. These modeling assumptions were detailed in the initial publication. The differences in the neutron, proton, and light-ion fluences and doses obtained between both codes were generally attributed to differences transport methodologies, nuclear physics models, boundary condition setup and detector regions. The commentary received demonstrated when both codes used a point-detector geometry and/or volume-averaged geometries, the two would yield similar proton fluences. This is a worthwhile observation that further emphasizes the impact of modeling assumption. The commentary further suggested however that the volume-averaged dose results "artificially reduced" estimates and that it was both "misleading" and "not-applicable" for use in storm shelter design. The response presented here will reiterate the context of the initial assumptions made, demonstrate the variability in point-dose estimates relative to a volume-averaged dose estimate, state why a volume-averaged estimate is equally applicable in this context, and lastly reference other factors that can give rise to increased uncertainty.


Assuntos
Proteção Radiológica , Método de Monte Carlo , Nêutrons , Doses de Radiação , Atividade Solar
5.
Life Sci Space Res (Amst) ; 21: 25-39, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31101153

RESUMO

Space agencies are currently developing reference mission scenarios to determine if occupational dose limits, already adopted for low-Earth orbit (LEO) missions to the International Space Station (ISS), are also applicable for deep space cis-lunar missions. These cis-lunar missions can potentially last upwards of a year, during which astronauts will experience a daily low-dose from galactic cosmic radiation (GCR) and a potentially high-dose from single, or multiple, solar particle events (SPEs). Unlike GCR exposure, SPEs are difficult to predict and model due to their sporadic nature. Consequently, mission planners have decided to rely on historical SPE spectra to prepare for the 'worst case' scenario. Assuming a spherical aluminum shell as a reference spacecraft, this paper demonstrates how the choice of SPE parametric model, shield thickness, dose metric, and radiation transport code can impact the decision-making criteria for the worst case SPE, the estimated GCR dose, and consequently whether current LEO dose limits are applicable.


Assuntos
Radiação Cósmica/efeitos adversos , Tomada de Decisões , Lua , Exposição à Radiação/análise , Proteção Radiológica/normas , Medição de Risco/métodos , Astronave/instrumentação , Humanos , Doses de Radiação , Monitoramento de Radiação , Atividade Solar
6.
Space Technol ; 22(3-4): 137-44, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12807141

RESUMO

UNLABELLED: The role of cross-cultural factors in long-duration international space missions was examined during an isolation study that simulated many of the conditions aboard the International Space Station. METHODS: Interactions involving two heterogeneous crews and one homogeneous crew staying in isolation from 110 to 240 days were studied. Data consisted of post-isolation interviews with crewmembers, ground support personnel and management, observational data, and public statements by crewmembers. Data was analyzed using the techniques of linguistic anthropology and ethnography. RESULTS: Sub-cultural (organizational and professional) differences played a larger role than national differences in causing misunderstandings in this study. Conversely, some misunderstandings and conflicts were escalated by participants falsely assuming cultural differences or similarities. Comparison between the two heterogeneous crews showed the importance of training, personality factors, and commander and language skills in preventing and alleviating cultural misunderstandings. CONCLUSION: The study revealed a number of ways that cultural differences, real as well as assumed, can play a role and interact with other, non-cultural, factors in causing and/or precipitating conflict situations. It is postulated that such difficulties can be avoided by selecting culturally adaptive crewmembers and by cross-cultural and language training. Also the crew composition and role of commander were found to be important in mitigating conflict situations.


Assuntos
Astronautas/psicologia , Comparação Transcultural , Diversidade Cultural , Isolamento Social/psicologia , Voo Espacial , Simulação de Ambiente Espacial , Adaptação Psicológica , Antropologia Cultural/métodos , Astronautas/educação , Características Culturais , Feminino , Humanos , Relações Interpessoais , Entrevistas como Assunto/métodos , Linguística/métodos , Masculino , Cultura Organizacional , Personalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...